Time Series

Lesson 3

Grant Foster



Time Series Process

Ultimately boils down to a joint probability function for x at all
moments of time ¢.

If x continuous, pdf = probability density function.
If = discrete, pmf = probability mass function.
Deterministic: z(t) = f(t) so p(x) = d(x — f(t)),

n

p(T1, Toy oy Ty) = H 3z — f(t))).

=1



Regression

We often examine data which we believe shows a deterministic
signal, and we wish to characterize that signal. In fact we often
have reason to believe we know the form of the signal, but we
have to use the data to estimate the parameters of our model.
This process can be called regression.



Least Squares Regression

There are many roads to regression, but by far the best-known
and most common method is least-squares regression.

Suppose, for instance, that we believe the data follow a straight
line, but also include random noise. In this case the observed
values x,, will be given by

Tp = 60 + 61tn + €n.

B, = intercept, [; = slope, &, = noise.



Least Squares Regression

For the moment, assume that the noise is zero-mean white noise
<5n> =0,
and that the variance of the noise is given by o2 so
(ejen) = o0,
where i, is the Kronecker delta,

1 1=k
5jk ==
0 else



Least Squares Regression

(Later ... we'll consider the effect if the noise follows some other
process.)



Least Squares Regression

For any given set of parameters (5, and (5;, we have a model of
the behavior of the data. The model, of course, enables us to
compute what the data values would be in the absence of noise

Yn = 60 + Bltw

We can take the difference between the observed values x,, and
the values from a particular model ¥, as the definition of the
restduals

Ry =2n — Yo = Tn — Bo — Biln.



Least Squares Regression

Now we can take the sum of the squares of all the residuals as
a measure of the “total error” of the model

N

E= Z Z - 60 - ﬁltn)Q

n=1

The method of least squares selects the parameter values which
give the smallest total error, or sum of squared residuals (SSR).

Hence the name “least squares.”



Least Squares Regression

How do we find those parameter values? We simply find the
values for which the partial derivative of the SSR with respect
to each and every parameter is equal to zero.



Least Squares Regression

For the intercept parameter 3, we have

OF N
=-2 n— Bo — Bitn) = 0.
a8, nzz:l(x 5 Bitn)
For the slope parameter 3; we have
0F

N
8761 - _Z;tn(xn - ﬂo - Bltn) = 0.

These are two equations in two unknowns (3, and /), enabling
us to determine the parameters.



Least Squares Regression

We can write them as

N N N n
an - ZBO"’ZBltn:Nﬁo"—Blztna
n=1 n=1 n=1 n=1

and

N N N
Ztnxn:Z/Botn_}'Zﬁl(t _Bozt +BlZ( )
n=1 n=1 n=1

n=1

These equations are linear in the parameters 3, and 3, so this
process is called linear least squares.



Least Squares Regression

For conceptual simplicity, I'll divide these equations by N and
define the average data value
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Least Squares Regression

Then the equations become

T = Bo—i_ﬁlt_’

and

iitm —ﬁ£+@znj(t )2
Nn:1nn— o N n .

n=1



Least Squares Regression

Or,
<ZL'> = ﬁo + 61<t>7
and

(tx) = Bo(t) + Bi(t?).

Keep in mind that since we assume that ¢, and x, are actual
data rather than just an abstract process, the angle brackets
denote average values rather than expected values.



Least Squares Regression

We can write these equations in matrix form, as
{(@] {1 (ﬂ] Bo]

wyl Lo @] s

The equations can be solved for the coefficients (,, by multiply-
ing both sides by the inverse of the matrix. This gives

m 1 {<t2> —<t>] <x>]
g B0 Ly 1 | ]




Least Squares Regression

Knowledge of the coefficients [y and f; tells us the straight
line which “best” fits the data in the least-squares sense. This
process is called linear regression.



Least Squares Regression
One should be careful about terminology.

In the name “linear regression” the word “linear” refers to the
fact that the model is a straight line.

BUT in the name “linear least squares” the word “linear” refers
to the fact that the model is linear in its regression coefficients
(whatever those coefficients might refer to).



Least Squares Regression

Some researchers make the mistake of saying they’'ve applied
“nonlinear” least squares when they’ve actually used linear least
squares, but the model has terms which are nonlinear in their
arguments. But they’re linear in the regression coefficients so
it’s linear least squares.



Least Squares Regression

Example: Global Temperature
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Basis for Least-Squares Regression

Why define the total error of a model by the sum of the squared
residuals?



Basis for Least-Squares Regression

Why define the total error of a model by the sum of the squared
residuals?

Suppose the data actually equal our model (straight line), plus
zero-mean i.i.d. Gaussian white noise. Then if the model is
correct, the residuals are zero-mean Gaussian iid noise so the
pdf for any single residual R; is the normal distribution

e—%R?/UQ

P(Z{j) = 07\/%



Basis for Least-Squares Regression

Since the noise values are independent, the joint pdf for all of

them taken together is the product of their individual proba-
bility densities

N [ -1R%/42 —3(RY+R3+...)/0”
e 27 e 2 1 2
L(Ri, Ry, ...) = =
(R1, Ry, ...) H[ ] oN (27)3N



Basis for Least-Squares Regression

It is often also useful to define the log-likelhood function, which
is just the logarithm of that

A(Rl, R27 ) = 1H(L<R1, PLQ, ))

1 X 1
=——Y R*- NI — —NIn(2m).
37 32 = Na(o) = 5N In(2n)



Basis for Least-Squares Regression

Now consider, what set of parameters (what regression fit)
would give the greatest likelihood of the observed data, i.e.,
give the greatest value of the likelihood function? Maximiz-
ing the likelihood function is equivalent to maximizing the log-
likelihood function, and maximizing the log-likelihood is equiv-
alent to minimizing the negative of the log-likelihood. Therefore
we really want to minimize the quantity

N
1
—A(Rl, Rg, Z -+ Nh’l —|— Nh’l(27T)



Basis for Least-Squares Regression

It turns out that the regression parameters which minimize this
are those which minimize the sum in the first term only, i.e.,
those which minimize

But this is just the sum of the squared residuals. Therefore
when the data follow our model plus zero-mean i.i.d. Gaussian
noise, least-squares gives the mazimum-likelihood solution.



Basis for Least-Squares Regression

Least-squares regression is the maximum-likelihood solution when
the noise is zero-mean, independent, identically distributed Gaus-
sian noise. Since that’s the most common assumption about the
noise in time series, the least-squares solution applies in a large
number of cases.

Its applicability is even wider, because of a result known as the
Gauss-Markov theorem.



Basis for Least-Squares Regression

For white noise (doesn’t have to be i.i.d. and it doesn’t have
to be Gaussian), then the least-squares solution is “BLUE,”
meaning Best Linear Unbiased Estimator. “Best” means least-
variance, i.e., that the uncertainty in our estimated parameters
is as small as possible. “Linear” means that the solution is a
linear function of the input data. “Unbiased” means that the
expected value of the regression fit is equal to the true regression
fit. In a wide variety of cases, we shouldn’t expect to do better
than least-squares regression. Least-squares regression is the
workhorse of regression modelling — and with good reason.



Uncertainty of Regression Parameters

Examples: least squares of random noise, to demonstrate that
parameter estimates are random variables.



Uncertainty of Regression Parameters

What is the uncertainty of the estimated parameters (3, and /3 )
from linear regression? Start from the fact that the regression
parameters are linear in the input data. For the intercept, e.g.,
there are coefficients @b} such that

N
50 = Z ,l/};ij7
j=1

where ﬁo is the estimated intercept. We’ll learn a lot more
about those coefficients 1/1; later. (call ‘em projection vector)



Uncertainty of Regression Parameters
Suppose the data actually follow our model, i.e.
SL’j = ﬁo + ﬁltj + Ej,

with £; white noise, and f3, is the ¢rue intercept. Then estimated
intercept is

. N N N N
By =S 0h(Bo+ Buty +5) = B, D 0L+ B 0ty + > wles.
j=1 j=1 j=1

j=1



Uncertainty of Regression Parameters

We'll see (later) that ¢;( has some very useful properties, in-
cluding

N
S
j=1

and

N
Soylt; = o0.
j=1



Uncertainty of Regression Parameters

Because of those properties, the estimated intercept is
N
By = Bo+ > e,
j=1
(e;) = 0 (for all j), so expected value of intercept estimate is
N
(Bo) = Bo+ le} (e3) = Boy
j=

ie. BO is an unbiased estimate. That’s good!



Uncertainty of Regression Parameters

What about its uncertainty? Difference from true value is

Z vlei)? Z > wjuleser

Now we use the fact that ¢; is white noise, so
<5j5k> = 0-25jk-

Since d;;, = 1 when j # k, the only terms surviving in the sum
are those for j = k.



Uncertainty of Regression Parameters

Therefore the variance of the intercept estimate is

0ta) = ((Bo — Bo)?) = 0” Z(¢})2,

. N
j=1

and og,) is the square root of that.



Uncertainty of Regression Parameters

There’s a different “projection vector” w; for the slope parame-
ter. A similar analysis hows that it too is an unbiased estimate,
with variance given by
A N T
2 2 2 2
Tty = (o= Bo) = * S0,

J=1

(using the other 1@, the one for the slope).



Uncertainty of Regression Parameters

The details depend on the quantities d}}, which depend on the
times of observation (but not on the data values).

There is an interesting special case: when the mean time is
zero, i.e. (t;) =0, we have the case that for the intercept

1
T_
¢J_N7



Uncertainty of Regression Parameters

In that case, the intercept estimate is

2\&

i.e. the estimated intercept is the average data value (when the
average time is zero).



Uncertainty of Regression Parameters

Its variance is then

0.2

= G- =L (5) = 5

This is the usual expression for the variance of an average, so the
estimated intercept is the usual average of x; and its variance
is the usual variance of the average.



Uncertainty of Regression Parameters

We still need an estimate of o2 (variance of the white-noise
process)! Estimate it as the variance of the residuals, with one
exception.

When we estimate the variance of data, we usually use
1 N
) =\2
Ol = = (2, — ),
@~ N _1 =

and we divide by N — 1 instead of N, because subtracting the
average T removes 1 degree of freedom.



Uncertainty of Regression Parameters

For linear regression, removing the linear fit (to generate resid-
uals) removes 2 degrees of freedom (slope and intercept), so we
estimate the white-noise variance from the residuals via
N
9 1

_ N2
0 = N5 '71(RJ) .
=

Note I didn’t subtract R, because the residuals already have
mean value zero.



Distribution of Regression Parameters

OK, parameters have the given mean (equal to true value) and
variance (given by forulae). But what is the probability distri-
bution?

Answer: because their deviations are sums of random variables
with given coefficients, the central limit theorem tells us it is
asymptotically normal.

Only true asymptotically. Unless: noise is truly iid Gaussian.
Then it’s truly normal.



Distribution of Regression Parameters

Even when truly normal, the test statistic (testing whether it’s
different from zero)
5

t=-
o(8)

Y

~

Isn’t normal, because it’s the ratio of a normal variable (3) to
the square root of a chi-square variable (6(g)). That follows the
t-distribution.

t is a t-statistic with N — 2 degrees of freedom.



Problem 1

Find a time series — one which interests you.

Use whatever software you like to use, to fit a linear time trend
to those data — one of the form

Xy = 50 + Bltj + €.
Treat the noise €; as white noise.
Examine the residuals.

Muse on your results.



Problem 2

Even though we haven’t yet studied how (we will in the next les-
son), your software can probably fit a more complicated model.
Try a quadratic regression of the form

z; = Bo+ Pit; + Bot] + 5,

and again treat the noise as white noise.



Problem 3

Using the same data, offset the times by one trillion
(1,000,000,000,000) so the new times are defined by

tnew = tora + 1000000000000.

Repeat the quadratic regression using the new time variable.
Discuss the differences introduced by offsetting the times by
such a large amount.



Problem 4

Earlier, things simplified when the average time was zero. We
can always do that, by offsetting the times to define a new time
variable

tnew = told — <told>-
Why might this be a worthwhile thing to do?



Problem 5

Take your time series from problem 1, re-define time according
to problem 4, then perform 5 different regressions:

xj = B+ Bitj + g5,
z; = Bo + Pit; + Pot] + ¢,
;= B+ Bit; + 52753 + ﬁgt? + ¢,
x5 = Bo + it + Bot] + Bst] + Bat + €5,
;= By + Bit; + 5215? + 5375? + 5415? + ﬁ5t? + €.



