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TS process which is white noise, but not iid?

Consider this probability function:

P1(x) =


2
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x = −1

1
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x = 2



white noise, not iid (cont.)

Consider this probability function:

P1(x) =


2
3

x = −1

1
3

x = 2

Expected value 〈x〉 = 0, expected square 〈x2〉 = 2, variance is

〈x2〉 − 〈x〉2 = 2− 0 = 2.



white noise, not iid (cont.)

Now consider a different probability:

P2(x) =


1
3

x = −2

2
3

x = 1

Again, its expectated value is zero, 〈x〉 = 0,
its expected square is 〈x2〉 = 2,
so its variance is

〈x2〉 − 〈x〉2 = 2− 0 = 2.



white noise, not iid (cont.)

TS process: random, probability function alternating between
P1 and P2.

For each value 〈x〉 = 0, and 〈x2〉 − 〈x〉2 = 2 – same for each;
for different values xj and xk (j 6= k), 〈xjxk〉 = 〈xj〉〈xk〉 = 0 so
cov(xj, xk) = 0. Therefore it is white noise.

But: even and odd values follow a different distribution, so not
identically distributed (and therefore not iid).



Weakly stationary but not strongly

Easy answer: same time series as for previous problem.

It’s white noise, therefore weakly stationary.

pdf is not time-translation invariant (different between evens
and odds), therefore not strongly stationary.



Show correlation between random
variables x and y cannot be > 1

• Already know that correlation between x and y is equal to
correlation between x − const. and y − const. Subtract mean
value from each, so x and y have mean value zero.



Show correlation between random
variables x and y cannot be > 1

• Already know that correlation between x and y is equal to
correlation between x − const. and y − const. Subtract mean
value from each, so x and y have mean value zero.

• In that case, covariance (not correlation) is simply

cov(x, y) = 〈xy〉 = γ,

(only because we imposed 〈x〉 = 0 = 〈y〉). I’ve simply given the
name γ to the covariance.



Correlation ≤ 1 (cont.)

Define a new variable

z = y − γx

〈x2〉
,

(keep in mind, 〈x2〉 is not a random variable, it’s just a number,
a property of the probability distribution).



Correlation ≤ 1 (cont.)

Define a new variable

z = y − γx

〈x2〉
,

(keep in mind, 〈x2〉 is not a random variable, it’s just a number,
a property of the probability distribution).

Like x and y, it has mean value zero

〈z〉 = 〈y〉 − γ

〈x2〉
〈x〉 = 0.



Correlation ≤ 1 (cont.)

Note that covariance of x and z is

〈xz〉 = 〈xy − γx2

〈x2〉
〉

= 〈xy〉 − γ〈x2〉
〈x2〉

= γ − γ = 0,

(again, only because 〈x〉 = 0 = 〈z〉).



Correlation ≤ 1 (cont.)

We can express y as

y =
γx

〈x2〉
+ z.



Correlation ≤ 1 (cont.)

Variance of y is (using 〈y〉 = 0)

〈y2〉 =
〈 γ2

〈x2〉2
x2 + 2

γ

〈x2〉
xz + z2

〉

=
γ2

〈x2〉2
〈x2〉+ 2

γ

〈x2〉
〈xz〉+ 〈z2〉

=
γ2

〈x2〉
+ 0 + 〈z2〉 =

γ2

〈x2〉
+ 〈z2〉.



Correlation ≤ 1 (cont.)

Correlation of x, y is (again using 〈x〉 = 0 = 〈y〉)

corr(x, y) =
〈xy〉√
〈x2〉〈y2〉

=
γ√

〈x2〉(γ2/〈x2〉+ 〈z2〉)

=
γ√

γ2 + 〈x2〉〈z2〉



Correlation ≤ 1 (cont.)

Note that 〈x2〉 ≥ 0 and 〈z2〉 ≥ 0 (they’re both squares!), so√
γ2 + 〈x2〉〈z2〉 ≥ |γ|.



Correlation ≤ 1 (cont.)

Note that 〈x2 ≥ 0 and 〈z2〉 ≥ 0 (they’re both squares!), so√
γ2 + 〈x2〉〈z2〉 ≥ |γ|.

Hence when γ ≥ 0,

corr(x, y) ≤ γ

|γ|
≤ 1.

Q.E.D.



Time Series Process

Ultimately boils down to a joint probability function for x at all
moments of time t.

If x continuous, pdf = probability density function.
If x discrete, pmf = probability mass function.

Deterministic: x(t) = f(t) so p(x) = δ(x− f(t)),

p(x1, x2, ..., xn) =
n∏
j=1

δ(xj − f(tj)).



Cov, Corr of values from the same TS

Covariance between two different values of a time series is

γ(j, k) = cov(xj, xk) = 〈xjxk〉 − 〈xj〉〈xk〉.

Likewise the correlation between two different values is

ρ(j, k) = corr(xj, xk)

=
cov(xj, xk)√

cov(xj, xj)cov(xk, xk)
=

γ(j, k)√
γ(j, j)γ(k, k)

.



Because these are the covariance and correlation between differ-
ent values of the same time series, we call them autocovariance
and autocorrelation



AutoCoVariance Function (ACVF)

Focus on evenly sampled time series so that the time spacing
between observations is everywhere equal.

In that case we can think of the index we attach to a value (the
“j” in xj) as a perfectly good “time index.”



AutoCoVariance Function (ACVF)

TS stationary⇒ expected value constant over time, i.e., 〈xj〉 =
µ. Autocovariance obeys

γ(j, k) = 〈xjxk〉 − 〈xj〉〈xk〉 = 〈xjxk〉 − µ2

= 〈xj+sxk+s〉 − µ2 = γ(j + s, k + s),

for any index offset s. Let h = k− j be the lag between the two
values, then

γ(j, j + h) = γ(j + s, j + s+ h).



AutoCoVariance Function (ACVF)

This means that

γ(j, j + h) = γ(n, n+ h),

for any two index values j and n.

Hence stationary time series⇒ autocovariance depends only on
the lag between the two values. Evenly sampled time series ⇒
time lag is determined by the index lag. Define the autocovari-
ance function (ACVF) as a function of the index lag h

γ(h) = γ(j, j + h) = cov(xj, xj+h).



AutoCoVariance Function (ACVF)

For a TS not evenly sampled, define ACVF as

γ(τ) = cov(x(t), x(t+ τ)).



AutoCoVariance Function (ACVF)

Commutative property of multiplication ⇒

γ(h) = 〈xjxj+h〉 − µ2 = 〈xj+hxj〉 − µ2 = γ(−h),



AutoCoVariance Function (ACVF)

Commutative property of multiplication ⇒

γ(h) = 〈xjxj+h〉 − µ2 = 〈xj+hxj〉 − µ2 = γ(−h),

so for a stationary TS the ACVF is an even function, i.e., for
negative lag is equal to its value for the same-size positive lag.



AutoCoVariance Function (ACVF)

Commutative property of multiplication ⇒

γ(h) = 〈xjxj+h〉 − µ2 = 〈xj+hxj〉 − µ2 = γ(−h),

so for a stationary TS the ACVF is an even function, i.e., for
negative lag is equal to its value for the same-size positive lag.

ACVF at lag zero is just the variance of the data series

γ(0) = 〈x2j〉 − 〈xj〉2 = σ2.



AutoCorrelation Function (ACF)

Stationary TS ⇒ like the ACVF, it depends only on the lag
between the times of the two time series values. For an evenly
sampled time series

ρ(h) = corr(xj, xj+h),

for an unevenly sampled time series

ρ(τ) = corr(x(t), x(t+ τ)).



AutoCorrelation Function (ACF)

Note from the definition of correlation

ρ(j, k) =
γ(j, k)√

γ(j, j)γ(k, k)
.

TS stationary ⇒ even simpler relation

ρ(h) =
γ(h)

γ(0)
.

Hence for a stationary time series the ACF, like the ACVF, is
an even function, i.e., ρ(−h) = ρ(h).



ACVF, ACF of White Noise

Definition of white noise is a stationary TS for which

〈xjxk〉 = µ2 + σ2δ(tk − tj),

where δ(h) = Dirac δ-function, µ = expected value (mean) of
the TS, σ2 = its variance. Using index values

〈xjxk〉 = µ2 + σ2δ(k − j),

where δ = discrete Dirac delta-function.



ACVF, ACF of White Noise

ACVF is nonzero only at lag zero

γ(h) =


σ2 h = 0

0 h 6= 0

It follows, ACF of white noise has the especially simple form

ρ(h) =


1 h = 0

0 h 6= 0



ACVF, ACF of White Noise

More compactly, ρ(h) = δ(h).

This simple behavior of the ACF and ACVF gives us a clue
whether a time series might be white noise. Suppose we had an
estimate of the ACF, given by ρ̂(h), at any arbitrary lag h. If
the series is white noise, the true ACF is ρ(h) = δ(h). Therefore
the estimated (or sample) ACF should be approximately equal
to the Dirac δ-function.



Yule-Walker Estimate

Given N data points in an evenly sampled time series (with
index values ranging from 1 to N), one useful estimate of the
sample ACVF is the Yule-Walker estimate

γ̂(h) =
1

N

N−h∑
j=1

(xj − x̄)(xj+h − x̄),

where x̄ is the sample mean (average)

x̄ =
1

N

N∑
j=1

xj.



Yule-Walker Estimate

Yule-Walker estimate is a biased estimate, i.e., its expected
value is not the true value!

〈γ̂(h)〉 6= γ(h).

Despite this drawback, the expected value of the Yule-Walker
sample ACVF is approximately equal to the true value.

Yule-Walker estimate of the ACF is

ρ̂(h) =
γ̂(h)

γ̂(0)
=

∑N−h
j=1 (xj − x̄)(xj+h − x̄)∑N

j=1(xj − x̄)2
.



Yule-Walker Estimate

For white noise, variance of the Y-W estimate is approximately

var(ρ̂(h)) ≈ 1

N
(unless h = 0).

The Y-W sample ACF, like the Y-W sample ACVF, is a biased
estimate, but again, the bias is small, the Y-W estimate is good,
and ρ̂→ ρ as N →∞.



“Eyeball” test for white noise

Given a sample, compute the sample ACF ρ̂(h). Lag zero
(h = 0): true and sample ACF are equal to 1. Nonzero lag:
sample ACF should equal zero within its error limits, which
at 95% confidence is within about two standard deviations of
zero. Variance of the sample ACF for white noise is approxi-

mately 1/N , standard deviation approximately
√

1/N , sample

ACF should be between−2
√

1/N and +2
√

1/N for most (about

95%) of lags which we test.



“Eyeball” test for white noise

Sample ACF for white noise will approximately follow the nor-
mal distribution. All of this is only approximate, but for a
decent sample size the approximation is usually a good one,
and as the sample gets bigger it gets better (in fact the Y-W
estimates are asymptotically normal).







AR(1) Noise

A type of noise which is stationary but not white noise. Rather
than no autocovariance or autocorrelation at nonzero lags, it
has autocovariance and autocorrelation at all lags.



AR(1) Noise

A type of noise which is stationary but not white noise. Rather
than no autocovariance or autocorrelation at nonzero lags, it
has autocovariance and autocorrelation at all lags.

It’s the first example of a whole class of random processes which
we’ll study in detail later. Let’s take a look at a first-order
autoregressive process, also known as AR(1) noise.



AR(1) Noise

To generate AR(1) noise:
• Multiply present the noise value by some constant φ
• Add a white-noise value to get the next AR(1) noise value

Hence AR(1) noise is defined by

xn = φxn−1 + wn.

Here wn is white noise, so its expected value never changes and
different values of wn are uncorrelated. Usually insist that wn
is a zero-mean white noise process so that 〈wn〉 = 0.



AR(1) Noise

Apply the definition recursively to note that

xn = φxn−1 + wn

= φ[φxn−2 + wn−1] + wn

= φ
[
φ[φxn−3 + wn−2] + wn−1

]
+ wn = ...



AR(1) Noise

Therefore
xn = φxn−1 + wn

= φ2xn−2 + φwn−1 + wn

= φ3xn−2 + φ2wn−2 + φwn−1 + wn = ...



AR(1) Noise

Therefore
xn = φxn−1 + wn

= φ2xn−2 + φwn−1 + wn

= φ3xn−2 + φ2wn−2 + φwn−1 + wn = ...

We can even recurse the process infinitely backward to see that

xn = wn + φwn−1 + φ2wn−2 + φ3wn−3 + ...

=
∞∑
j=0

φjwn−j.



AR(1) Noise

Use the fact that 〈wn〉 = 0 for all wn to compute the expected
value of xn as

〈xn〉 =
∞∑
j=1

φj〈wn−j〉 = 0.

This AR(1) noise process is a zero-mean noise process.



AR(1) Noise

We can also compute the variance of an AR(1) process. We
have

σ2 = 〈x2n〉 = 〈
( ∞∑
j=0

φjwn−j
)2
〉

= 〈
( ∞∑
j=0

φjwn−j
)( ∞∑

k=0

φkwn−k
)
〉

=
∞∑
j=0

∞∑
k=0

φj+k〈wn−jwn−k〉.



AR(1) Noise

Zero-mean white noise ⇒ 〈wjwk〉 = σ2
wδ(j − k), so that

〈wn−jwn−k〉 = σ2
wδ(n− j − n+ k)

= σ2
wδ(k − j) = σ2

wδ(j − k).

We end up with

σ2 =
∞∑
j=0

∞∑
k=0

φj+kσ2
wδ(j − k) = σ2

w

∞∑
j=0

φ2j.



AR(1) Noise

If the parameter φ satisfies |φ| < 1, then it’s a standard alge-
braic result that ∞∑

j=0

φ2j =
1

1− φ2
,

and we have

σ2 =
σ2
w

1− φ2
.



AR(1) Noise

If φ satisfies |φ| ≥ 1, then the sum is infinite, i.e., it diverges,
in which case the variance σ2 of our AR(1) process is infinite.
This is often undesirable behavior; such an AR(1) process is
called explosive.



AR(1) Noise

The covariance between different x values for lag h > 0 is

γ(n, n+ h) = 〈xnxn+h〉 − 〈xn〉〈xn+h〉.



AR(1) Noise

The covariance between different x values for lag h > 0 is

γ(n, n+ h) = 〈xnxn+h〉 − 〈xn〉〈xn+h〉.

Since AR(1) noise is zero-mean, this reduces to

γ(n, n+ h) = 〈xnxn+h〉.



AR(1) Noise

The covariance between different x values for lag h > 0 is

γ(n, n+ h) = 〈xnxn+h〉 − 〈xn〉〈xn+h〉.

Since AR(1) noise is zero-mean, this reduces to

γ(n, n+ h) = 〈xnxn+h〉.

We can use the recursive form to compute this, just as we did
for the variance

γ(n, n+ h) =
∞∑
j=0

∞∑
k=0

φj+k〈wn−jwn+h−k〉.



AR(1) Noise

Again apply 〈wjwk〉 = σ2
wδ(j − k) to get

γ(n, n+ h) =
∞∑
j=0

∞∑
k=0

φj+kσ2
wδ(k − j − h)

= σ2
w

∞∑
j=0

φ2j+h = σ2
wφ

h
∞∑
j=0

φ2j.

By the same algebraic relation we applied before, this is

γ(n, n+ h) = φh
σ2
w

1− φ2
= φhσ2.



AR(1) Noise

This doesn’t depend on the particular index value n, so it’s
time-translation invariant. Since AR(1) noise has constant (zero)
mean and time-translation-invariant autocovariance, it’s a sta-
tionary process. We can sum up its first two moments by saying

〈xn〉 = 0,

and for any lag h (positive, negative, or zero)

γ(h) = 〈xnxn+h〉 = φ|h|σ2.



AR(1) Noise

ACF is therefore

ρ(h) =
γ(h)

γ(0)
= φ|h|.



AR(1) Noise

ACF is therefore

ρ(h) =
γ(h)

γ(0)
= φ|h|.

We’ve introduced AR(1) noise, long before we consider the class
of noise processes of which it’s a member, simply to give an ex-
ample of a purely random process which shows autocorrelation.







Unit Vector

For a stationary time series, expected value is constant over
time and autocovariance depends only on the lag, i.e., the dif-
ference between the time values of the observations. We can
say

〈xn〉 = µ,

where µ is the mean value. Holds true for all n values, i.e.,
there is an identical copy of this equation for every n.



Unit Vector

We can also write this as a vector equation by using a Greek let-
ter subscript, which according to the convention introduced pre-
viously means that the subscripted quantity is a vector rather
than an individual value. But we cannot say

〈xα〉 = µ,

because such an equation is nonsense. The left-hand side is a
vector (because it’s the expected value of a vector), but the
right-hand side is not a vector, it’s a scalar.



Unit Vector

Therefore let’s introduce a remarkably useful quantity, the unit
vector 1α. It’s a vector for which all the individual components
are equal to 1. Hence we can say that

1n = 1,

where we’ve used a Latin index to indicate that this equation
refers to the individual values, so we have a copy of this equation
for each possible index value n.



Unit Vector

With the unit vector in hand, we can express the constancy of
the vector of expected values of the TS by saying

〈xα〉 = µ1α.

This single equation is an equality between two vectors rather
than a set of equations expressing equality between scalars. The
distinction may not seem important or useful at this time, but
its value will become clear later.



Variance-Covariance Matrix

We can express the time-translation invariance of the covari-
ances between different time series values by saying

cov(xj, xk) = γ(|k − j|),

which expresses the fact that the covariance depends only on
the difference between the time indexes, i.e., the lag between
the values. For a time series which is not evenly sampled we
would say

cov(x(tj), x(tk)) = γ(|tj − tk|).



Variance-Covariance Matrix

Whether a TS is stationary or not, we can arrange the covari-
ances of the values into the variance-covariance matrix

Vjk = cov(xj, xk).

Note the diagonal elements are the variances of the individual
TS values while the off-diagonal elements are the covariances
between different values, hence the name “variance-covariance
matrix.” Many authors use the symbol Γ to represent the
variance-covariance matrix, but I prefer the symbol V , reserv-
ing Γ for other uses.



Variance-Covariance Matrix

The previous expression is a whole set of equations, one for each
pair of TS values xj and xk. We can write it as a single matrix
equation

Vαβ = 〈xαxβ〉 − 〈xα〉〈xβ〉.

The variance-covariance matrix is fundamental in time series
analysis. Its importance can hardly be overstated.



Variance-Covariance Matrix

Because multiplication is commutative, the variance-covariance
matrix is symmetric, i.e.,

Vjk = Vkj.

We can write this as a genuine matrix equation by saying

Vαβ = Vβα,

which is not an equation about individual values; the quantity
Vβα is not a particular entry of the matrix, it’s a matrix which
is the transpose of the matrix Vαβ.



Variance-Covariance Matrix

When the TS is evenly sampled and stationary we have

Vjk = γ(|j − k|),

so its value depends only on the difference between the index
values. This means that the values are unchanged when one
moves up-and-to-the-left or down-and-to-the-right around the
matrix. Any matrix which has this property is called a Toeplitz
matrix.



Variance-Covariance Matrix

Therefore, for an evenly sampled TS the property of station-
arity is equivalent to the two requirements that the mean is
time-independent, and that the variance-covariance matrix is a
symmetric Toeplitz matrix.



Variance-Covariance Matrix of White Noise

For white noise, the variance-covariance matrix takes the espe-
cially simple form

Vjk = σ2δjk,

where δjk is the Kronecker delta. It’s like the Dirac δ-function
except that for the Kronecker delta, being nonzero only for a
limited set of values applies to the indices, i.e.

δjk = δ(j − k) =
{

1 j = k
0 j 6= k



Variance-Covariance Matrix of White Noise

We can turn the set of equations into a single matrix equation
just by writing

Vαβ = σ2δαβ,

for white noise. Hence the symbol δjk denotes a set of values
which are zero except when j = k, while the symbol δαβ denotes
a matrix (which happens to be the identity matrix).



Variance-Covariance Matrix, Stationary TS

For a stationary TS, the mean µ is constant, the variance-
covariance matrix is a symmetric Toeplitz matrix, so

〈xjxk〉 = µ2 + Vjk,

or in matrix form

〈xαxβ〉 = µ21α1β + Vαβ.

This serves to emphasize just how fundamental is the variance-
covariance matrix.



Making Data Stationary

Many methods and models which can be applied to a stationary
TS. But if a time series is not stationary, those methods don’t
apply. We can, however, sometimes find a convenient way to
make it so.

The data in the following TS is not stationary, but is still the
result of a purely random noise process.





Making Data Stationary

In some cases (and even when there is a signal present) we
can eliminate the drift (the changing mean value over time) by
computing the first-differenced time series. The first differences
are defined as

∆xj = xj − xj−1.



Making Data Stationary

We can think of ∆ as an operator, the first-difference operator,
which transforms a TS into its first differences. Note that the
first difference for the initial data value is undefined because we
don’t know the value of its predecessor, so the first-difference
TS has one data point fewer than the series from which it’s
derived. The first differences of this set of data are shown in
the following figure.





Making Data Stationary

Be aware that if a time series is the sum of signal and noise,
first differencing will alter the signal as well as the noise, and
in some cases will eliminate it. Suppose a TS is the sum of a
perfectly linear trend and stationary noise

xj = βo + β1tj + εj.

We can directly compute the first-difference values as

∆xj = xj − xj−1 = β1(tj − tj−1) + εj − εj−1.



Making Data Stationary

When the data are evenly spaced with spacing τ so tj = jτ

∆xj = β1τ + εj − εj−1.

This happens to be a stationary noise process. It’s not zero-
mean noise because its mean value is β1τ (unless the slope β1 is
equal to zero). It’s not white noise because it shows autocorre-
lation at lags other than zero (its lag-1 autocorrelation is −1

2
).

But it is a pure noise process, there’s no signal to extract. The
signal has been eliminated by the first-difference operator.



Making Data Stationary

Suppose the trend is a quadratic function of time

xj = βo + β1tj + β2t
2
j + εj.

Applying the first-difference operator gives (assuming even sam-
pling with time spacing τ)

∆xj = β1τ + 2β2τtj − β2τ 2 + εj − εj−1.

Not yet stationary because a linear time trend is still present.



Making Data Stationary

Applying the first-difference operator again gives

∆2xj = 2β2τ
2 + εj − 2εj−1 + εj−2.

We now have a stationary time series to work with. The twice-
applied difference operator ∆2 is called the second-difference
operator.

In general, a signal which is a polynomial of degree p will be
eliminated by applying the difference operator p times.



Making Data Stationary

In some fields, notably economics, it is customary to remove
trends by applying the difference operator enough times to
make the data stationary. But in the physical sciences, it is
usually the signal which we’re most interested in studying. Re-
moving it by repeated differencing eliminates exactly what we
want to study. One of our focal points is not to rely on the
viewpoint that differencing is always the way to deal with non-
stationary time series. Sometimes it is! But in the physical
sciences it is sometimes counterproductive.



Heteroskedasticity

Time series can be non-stationary for reasons other than trend.
The following figure shows data which exhibit a trend, but also
show another kind of non-stationarity, the fact that the variance
of the data shows notable changes. Such behavior is called
heteroskedasticity.

It often happens when the variance of the data is larger for
larger data values, as is the case in this example.





Heteroskedasticity

When that happens, we can sometimes eliminate heteroskedas-
ticity by transforming the data. One common approach is to
log-transform the data. When applied to these data, it gives the
following (the varying degree of data variance has been elimi-
nated).





Heteroskedasticity

Of course the trend still remains, but that can be eliminated
by first-differencing as in the following. The first-differenced
log-transformed data are in fact a stationary time series.





Heteroskedasticity

Sometimes log-transforming doesn’t eliminate heteroskedastic-
ity, it only changes it. An example is monthly mean sunspot
numbers.





Heteroskedasticity

There is greater variance when sunspot numbers are large than
when they are small. But log-transforming the data doesn’t
solve the problem, only reverses it so that there is greater vari-
ance when sunspot numbers are small than when they are large.





Heteroskedasticity

Another common strategy is to subject the data to a power
transform. This is defined for some well-chosen exponent λ as

yj =
xλj − 1

λgλ−1
,

where g is the geometric mean of the x values

g =

 N∏
j=1

xj

1/N



Heteroskedasticity

The factor gλ−1 is included in the denominator so that the units
of measurement will remain unchanged.

Sometimes the factor g is ignored, which gives the very similar
Box-Cox transform

yj =
xλ − 1

λ
.

With this definition, the log-transform of the data is the limit
as λ→ 0.



Heteroskedasticity

The following shows the result of applying a Box-Cox transform
to sunspot counts with exponent λ = 1

2
.




