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Change is the essential property of
the universe – Spock

The mathematical discipline which focuses on analyzing and
understanding changes over time is time series analysis.



What is Time Series?

There are two senses of the phrase:

1: A process by which data change over time,
i.e., the “rules” by which things change.
Examples: flip a coin – free fall
May not have happened yet

2: A set of data at a set of times.
Also known as a realization of a time series process.
Might not (probably don’t) know the process



Deterministic .vs. Stochastic

• Deterministic: execute the TS process many times, get the
same result every time.

• Stochastic: execute the TS process many times, get different
results.



Two numbers for each “observation”:

1: The data (usually call it x)

2: The time (usually call it t)

Therefore a TS in the sense of a realization is a set of data pairs
(tj, xj), for j = 1, 2, ..., N values, giving the time tj and value
xj of the jth observation.



When the times are evenly spaced (referred to as evenly sampled
time series), it’s not uncommon to omit recording the times.
Instead we either record the index numbers of the data values
(from 1 to however many we have), or we may not even do that,
simply assuming that they’re “understood.”

This is a common practice for many treatments of time series,
often thought of as a set of single numbers xj rather than num-
ber pairs. That’s fine if the times are evenly spaced, but in the
very common case of uneven sampling it just won’t do.



Time is not necessarily “time”

Coin-flip example: recorded time as the flip number. Time
starts at 1, goes up to the number of flips we execute, and
takes only integer values.

By the nature of the process, time is a discrete variable for
the coin flip. A considerable part of the theory of time series
involves processes for discrete time series.



Time is a continuous variable

Of course we can’t analyze a continuum of data! In fact any
observed time series consists of a finite number of data pairs.
Even when the time variable is continuous, if the observations
are taken at regular intervals of time we can apply many of the
methods used for discrete time series.

But if the times of observations are irregularly spaced (referred
to as uneven sampling or irregular sampling) a number of com-
plications arise in the analysis.



Time is Special

• It’s an independent variable, truly and completely.

• There’s an “arrow of time” – it goes from past to future.

• Time measurements usually treated as error-free.



Goals

In a broader sense, understand the time series process.

TS process: understand how the data will behave if we execute
it.

TS realization: identify the process which generates it.
Which part of the process is deterministic, creating the signal?
Which part is stochastic, creating the noise?
Understand the nature of each.

End up with a useful model of the process.



Another Goal

Predict the future course of the time series variable.

Even if we don’t necessarily know the process with confidence,
we may be able to approximate it sufficiently to make useful (if
uncertain) predictions.

Applies to both deterministic and random time series, and to
combinations of the two; even if the process is entirely random,
it may be complicated enough that we can calculate useful pre-
dictions far enough into the future to be of palpable benefit.



Notation

Most statistics uses E(x) to denote the expected value of a ran-
dom variable x. I prefer to use 〈x〉.

Angle brackets around random variable ⇒ expected value

〈Qn〉 = expected value of Qn,

Around observed data ⇒ average value

〈Q〉 =
1

N

N∑
n=1

Qn.



Abstract Index Formalism

Suppose a TS is the sum of a deterministic part and a stochastic
part:

xn = f(tn) + εn

The “n” subscript on x in this equation refers to a specific,
single value of the observed variable x at a specific, single value
of the time t. If this holds for all n, then we have a separate
copy of this equation that holds for every index value n.



Abstract Index Formalism (cont.)

Sometimes it’s desirable to denote, rather than a single value
of the observable, all the values taken together as a whole.

There’s considerable advantage in treating the time series data
as a vector, in which case it’s even more advantageous to treat
all the individual quantities as a unified whole rather than a
disparate set of numbers.



Abstract Index Formalism (cont.)

Convention (not always followed!) a subscript taken from the
lowercase version of the latin alphabet, like n in the equation
above, will denote an individual value of the times series, as it
usually does. If that equation holds for the entire time series,
then we have multiple copies of that equation, one for each
index value.



Abstract Index Formalism (cont.)

Convention (not always followed!) a subscript taken from the
lowercase version of the latin alphabet, like n in the equation
above, will denote an individual value of the times series, as it
usually does. If that equation holds for the entire time series,
then we have multiple copies of that equation, one for each
index value.

A subscript taken from the Greek alphabet will denote, not
an individual member of the time series, but the vector of all
values.



Abstract Index Formalism (cont.)

The equation
xα = fα + εα,

indicates that the vector xα is decomposed into the determinis-
tic and stochastic vectors fα and εα.

It follows that equation

xn = fn + εn,

must hold true for each individual component of those vectors,
i.e., for each value of n.



Abstract Index Formalism (cont.)

Second equation holds for each time index value, but first equa-
tion is not a statement about individual time index values,
rather it’s an equality between two vectors.



MANY notations for vectors

Statistics: set a symbol in bold-face type

x = f + e.

Physics: place an arrow above a symbol

~x = ~f + ~ε.

Quantum mechanics: place a vertical bar to the left,
angle bracket to the right

|x〉 = |f〉+ |ε〉.



MANY notations for vectors (cont.)

They’re all the same equation, just using different notation.

Keep in mind that in the abstract-index notation, the abstract
marker is not an index, it’s just a marker indicating the vector
nature of the given quantity.



Einstein Summation Convention

We often have to sum an expression over all values of the time
index, or all values of multiple time indexes. Example: the sum
of the products of the values of two time series x and y is

N∑
n=1

xnyn.



Einstein Summation Convention (cont.)

Useful convention: when using Greek indices to denote vectors,
any index which is repeated indicates the dot product (or inner
product or transvection) of the vectors, which is computationally
equivalent to the sum over all index values. Known as the
Einstein summation convention.

Hence the same quantity indicated before can simply be written

xαyα.



Einstein Summation Convention (cont.)

Another notation for inner product:

xTy

= ~x · ~y
= 〈x|y〉

=
N∑
j=1

xjyj

= xαyα.



Einstein Summation Convention (cont.)

Eliminates the need to write repeated summation symbols.
After you become familiar with it, will actually help you be
clear which variables are summed, and in which way. We can
extend the convention to multiple summations using multiple
indices, so that for example

N∑
j=1

N∑
k=1

N∑
n=1

Mjkcnxjyktn = Mαβcλxαyβtλ.



Notation

In private calculations, use the notation that works for you.
In publications, use notation that’s clear to your readers.

Best notational advice I ever got:

Notation should be your servant,
not your master.



Visual Inspection

Eye-brain combination is one of the most potent pattern-recognition
systems known. A first step in time series analysis (alas, one of
the too-often neglected steps) is to

graph the data and look at it.

Process is referred to as visual inspection.

Never underestimate its power.



Visual Inspection (cont.)

Risk of visual inspection: Eye-brain combination is all too easily
fooled, far too likely to see patterns or processes which are really
just noise – “pictures in the clouds” that aren’t real. Don’t
neglect visual inspection, it’s too potent to ignore, but do be
skeptical about what you see might be there.



Decomposition of a Time Series

Time series can be completely random (coin-flip series)

Can be completely deterministic (path of a spacecraft through
empty space)

More often, time series are a combination of both, having a
deterministic part and a random part.

Deterministic part sometimes called signal

Random part also called stochastic part, sometimes called noise.



One type of noise: measurement error

Difference between any physical process and our measurement
of that process.

Example: the brightness of a star can be measured, usually on a
scale called magnitude; if the star is perfectly constant then its
magnitude will be constant. When we measure the brightness,
our measurments are bound to be imperfect. Difference be-
tween the brightness and the measured or estimated brightness
is called the measurement error.



Random Process

Not all randomness is measurement error.

The process itself can include randomness, e.g. coin flip.

Processes can be effectively random, e.g. rainfall amount.



Decomposition of Time Series

• Separate into deterministic and stochastic parts (signal and
noise).

• Most common way: additive model.

data = signal + noise

x(t) = f(t) + ε(t)



Further Decomposition

Separate signal into periodic part (cycles or seasonality) and
non-periodic part (trend)

Additive model:
f(t) = T (t) + S(t).



Not Necessarily Additive

Perhaps f(t) = T (t)S(t) (multiplicative).

Or maybe f(t) = T (t)S(t) (exponential).

Generally, f(t) = F (T (t), S(t)) (any functional relationship).

Only limit is your imagination!

But – additive model is most common.



Mix and Match

Example: signal is multiplicative combination of trend and sea-
sonality, time series is additive model of signal and noise:

x(t) = T (t)S(t) + ε(t).

Most generic:
x(t) = F (T, S, ε).

General principle: simplicity.



Stationary Time Series

Stochastic ⇒ the most we can know is the probability distribu-
tion of values.

Each value xj may follow a different distribution

Prob. = Pj(xj) dxj.

Of course
Pj(xj) ≥ 0,∫
Pj(xj) dxj = 1.



Relationship among different values

Even if completely random, different values may be related.

Example: if one value is large, the next may be more likely to
be large also (or perhaps more likely to be small).

Example: the value 12 time “steps” later may be more likely
large or small.

Only limit to relationships is your imagination.



Relationships (cont.)

Express relationships between different values through the joint
probability distribution

Prob. = f(xn1 , xn2 , ..., xnj
) dxn1 dxn2 ... dxnj

.



Purely Deterministic

If there’s no randomness, we can be certain what the value will
be. We might know, e.g. that x = 0.

Then the probability distribution expresses certainty. The pdf
is the Dirac delta function δ(x).

Zero for x 6= 0 (so the probability x 6= 0 is zero, i.e. impossible).

It’s “infinite” for x = 0, but “just the right size” infinity that∫
δ(x) dx = 1.



Dirac Delta (cont.)

Most assuredly not a function (topic for another course).

Version for discrete (rather than continuous)

δ(x) =


1 x = 0

0 else

Discrete version is a function (with limited domain).



Stationary Time Series

pdf is the same for all values

Pn1(xn1) = Pn2(xn2) for all n1, n2.

Can also write as

Pn(xn) = Pnk
(xn+k) for all n, k.

k is the lag between the values.



Stationary Time Series (cont.)

Essence: pdf is time-translation invariant,
i.e. translating through time doesn’t change the behavior.



Stationary Time Series (cont.)

How about dependencies between different values?

Joint pdf is also time-translation invariant if, for any choices
xn1 , xn2 , ..., xnj

, the joint probability distribution is unchanged
when all the relevant times tn1 , tn2 , ..., tnj

are offset by the same
constant τ , i.e.,

P (x(tn1), x(tn2), ..., x(tnj
))

= P (x(tn1 + τ), x(tn2 + τ), ..., x(tnj
+ τ)).



Stationary Time Series (cont.)

If (and only if) the times are equally spaced, then a constant
offset in time by τ corresponds to a constant offset of the in-
dex value by k, and we can state the requirement for time-
translation invariance as

P (xn1 , xn2 , ..., xnj
) = P (xn1+k, xn2+k, ..., xnj+k).



Stationary Time Series (cont.)

Definition: a time series is strongly stationary ⇔ all pdfs for
individual values and joint pdfs for multiple values are time-
translation invariant.

Essentially, it means that the essential nature doesn’t change.

Values can still be related to other values (to “conditions at
the time”), but if we recreate the same conditions, we’ll get the
same pdf.



Stationary Time Series (cont.)

Strongly stationary is extremely stringent, and extremely hard
to demonstrate for observed time series (it’s a condition on all
joint pdfs). Almost always use a weaker (but useful) condition.



Stationary Time Series (cont.)

Require only that the first two moments of probability be time-
translation invariant. Hence expected value (1st moment) must
be the same for all times

〈xj〉 = 〈xj+k〉,

for all index values j and offsets k.



Stationary Time Series (cont.)

Likewise for the expected product of two values (2nd moments)

〈x(t1)x(t2)〉 = 〈x(t1 + τ)x(t2 + τ)〉,

or all times t1 and t2, and all time offsets τ . If the times are
evenly spaced, we can equivalently say

〈xjxk〉 = 〈xj+hxk+h〉,

for any index values j and k, index offset h.



Stationary Time Series (cont.)

Such a time series is said to be weakly stationary. Unless oth-
erwise stated, the word “stationary” means weakly stationary.

Much less stringent than strongly stationary, and much more
practical.



Stationary Time Series (cont.)

Why so useful? Because we so often estimate things based on
many data values (parameters of a model, summary statistics,
...).

When we do, the central limit theorem ensures those estimates
follow the normal distribution, which is completely character-
ized by its mean and standard deviation. The first two moments
of the TS often enable us to compute the first two moments of
the parameters/etc., hence its normal distribution.



White Noise

One particular type of random process is extremely important
in time series analysis: white noise. It’s defined by the fact
that it is stationary, and that any two different values have no
covariance.



Covariance

The covariance of two variables is the expected value of the
product of their deviations from their respective means, i.e.

cov(X, Y ) = 〈(X − 〈X〉)(Y − 〈Y 〉)〉.



Covariance (cont.)

We can use the fact that the expected value is not a random
variable (rather it’s a property of a probability distribution)

cov(X, Y ) = 〈XY 〉 − 〈X〉〈Y 〉 − 〈X〉〈Y 〉+ 〈X〉〈Y 〉

= 〈XY 〉 − 〈X〉〈Y 〉.

Therefore the covariance of two quantities is the difference be-
tween the expected value of their product, and the product of
their expected values.



White Noise (cont.)

Since white noise is stationary, its expected value doesn’t de-
pend on time

〈xn〉 = constant = µ,

where µ doesn’t depend on time, so it doesn’t depend on the
time index n. The 2nd moment of the distribution for xn must
also be constant through time, so that

〈x2n〉 = constant = µ2 + σ2,

which defines σ2, the variance of the time series values.



White Noise (cont.)

The variance is, of course, just the covariance of a value with
itself

σ2 = 〈x2n〉 − 〈xn〉2.



White Noise (cont.)

The fact that different values have no covariance means

〈xjxk〉 − 〈xj〉〈xk〉 = 0,

for j 6= k. We can therefore say in general that for white noise

〈xjxk〉 = µ2 + σ2δ(j − k),

where δ(n) is the discrete Dirac δ-function. A time series pro-
cess obeying these requirements is white noise.



i.i.d. Noise

For i.i.d noise, different values are actually independent, mean-
ing the joint pdf for multiple values is just the product of the
one-variable pdf for the different values

P (xa, xb, ..., xj) = Pa(xa)Pb(xb)...Pj(xj).

Furthermore, since this type of noise is identically distributed
all the functions Pa(xa), Pb(xb), ... are the same function.



i.i.d. Noise (cont.)

It’s not too hard to see that for i.i.d. noise, all the joint prob-
ability distributions are time-translation invariant. Hence i.i.d.
noise isn’t just stationary, it’s strongly stationary.



Zero-Mean Gaussian i.i.d. Noise

Gaussian noise follows the normal probability distribution

P (x) =
e−

1
2
(x−µ)2/σ2

σ
√

2π
.

It often happens that the mean value µ is zero, giving zero-mean
Gaussian i.i.d. noise

P (x) =
e−

1
2
x2/σ2

σ
√

2π
.



Correlation

Covariance of two quantities is the difference between the ex-
pected value of their product, and the product of their expected
values.

Correlation between two quantities is their covariance, scaled
by the square root of their variances (i.e., by their standard
deviations).



Correlation (cont.)

Variance is covariance of a variable with itself, so

corr(X, Y ) =
cov(X, Y )√

cov(X,X)cov(Y, Y )
.



Correlation (cont.)

If we rescale the quantities by multiplying them by constants α
and β, defining new quantities

X̃ = αX, Ỹ = βY,

then the correlation of the re-scaled quantities is the same as
that of the original quantities

corr(X̃, Ỹ ) = corr(X, Y ).



Correlation (cont.)

It’s easy to see that the correlation of a quantity with itself
is exactly equal to 1. The correlation of any two quantities is
always between -1 and +1.



Problem 1

This is for general online discussion; feel free to post your an-
swer in the comment section.

• Give an example of a time series process which is white noise,
but is not i.i.d.



Problem 2

This is for general online discussion; feel free to post your an-
swer in the comment section.

• Give an example of a time series process which is weakly
stationary but not strongly stationary



Problem 3

We said that if random variables x and y are transformed by
re-scaling, so the new varibles are x̃ = αx and ỹ = βy (α and
β constants), then the new variables have the same correlation
as the original variables.

Suppose we apply an affine transformation, so the new variables
are x̃ = α1x + α2 and ỹ = β1y + β2 (with α1, α2, β1 , β2 con-
stants). Show that the new variables have the same correlation
as the old.



Problem 4

I suspect this is a tough one; don’t worry too much about it
(or, maybe it’s easy?).

Show that the correlation between any two random variables x
and y cannot be greater than 1.


